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Dynemicin A (1) is a potent cytotoxin with several notable 
structural features, including a complex heterocyclic skeleton 
and a network of sensitive functional groups (Scheme I).1 

Especially precarious with regard to a total synthesis of dynemicin 
A is the juxtaposition of epoxide, enediyne, and anthraquinone 
elements.2'3 Under suitable conditions, the interactive chemistry 
of these groups leads to a cascade of intermediates, one or more 
of which are able to cleave the backbone of DNA in vitro.4 We 
now report a reaction sequence that results in the total syntheses 
of (±)-di- and -tri-0-methyl dynemicin A methyl esters (com
pounds 2 and 3, respectively). 

Examination of the X-ray crystal structure of triacetyl 
dynemicin A led to the hypothesis that severe steric buttressing 
would destabilize an A -̂acylated angular anthraquinone.5 It was 
therefore deemed necessary to develop a protecting group strategy 
in which nitrogen deprotection would directly precede completion 
of the anthraquinone segment. Since our earlier procedure for 
the elaboration of the 1,4-cyclohexadiene core of dynemicin A 
involved both strongly basic and acidic conditions,28 we found it 
necessary to use a latent, base-labile protecting group in which 
a substituted propionate that is capable of /3-elimination derives 
from a protected 1,3-propanediol.6 

The methyl urethane of the product of a transannular Diels-
Alder cyclization, 4, was exchanged by the action of potassium 
hydroxide in refluxing THF/water followed by treatment of the 
free amine with 3-benzoyloxypropyl chloroformate (Scheme I).7 

Thus protected, compound 5 was converted into the enol diester 
9 by using slight modifications of procedures we had developed 
previously. This synthetically economical sequence exploits an 
alcohol -* acid oxidation to simultaneously transform a base-
stable urethane (cf. 6 -* 7) into a protecting group that can now 
be removed under mildly basic conditions. 

Because molecules that incorporated a vinylogous carbonate 
were relatively unstable toward Lewis acids, the subsequent 
annulation required considerable experimentation and optimi
zation (Scheme II). Under scrupulously anhydrous conditions, 
silver triflate promoted the regioselective Friedel-Crafts-type 
coupling of 9 to 3-bromo-4,7-dimethoxyphthalide2c within 1 min 
at 0 0C to give a 1:1 mixture of diastereomeric lactones. 
Methylation (K2CO3, Me2SO4, acetone, 23 0C, 2.5 h) of the 

crude mixture provided compounds 10a,b in 57% overall yield. 
The lactone was then reductively opened with the reagent 
combination Et3SiH/MeAlCl2 (CH2Cl2, -78 0C — 50 0C, 1 h, 
82% yield). Cyclization of the resultant acid 11 was effected by 
conversion to the acid chloride followed by treatment with 
trimethylsilyl triflate. This gave an unstable anthracenol de
rivative (ti/2 « 30 min) that was immediately oxidized (DDQ, 
O0C, aqueous THF, 5 min) to give the hexacyclic ketol 12 in 51 % 
overall yield.8 

To complete the synthesis, we needed only to epoxidize the 
olefin, remove the urethane protecting group, and oxidize the 
secondary alcohol to a ketone. We took notice of the fact that 
a deprotected, epoxy ketol such as 13, formally a two-electron 
reduction product of our target, would be a tautomer of the 
hydroanthraquinone 14. Since 14 was expected to undergo 
spontaneous Bergman cyclization (cf. 15) by analogy to the known 
behavior of dynemicin A under reducing conditions, we initially 
sought to avoid possible entry into this equilibrium.4'9 Model 
studies that investigated alternative pathways failed to produce 
any enediyne-containing anthraquinones. Hence, we opted to 
proceed through intermediate 13, hoping that a kinetic barrier 
to tautomerization would prevent epoxide opening and Bergman 
cyclization. Success was finally realized with the following 
sequence of reactions: (1) regioselective epoxidation of 12 with 
MCPBA/CH2C12 (23 0C, 2.5 h, 73% yield), (2) urethane 
deprotection with 0.11 M DBU/MeOH (23 0C, 1 h), and (3) 
oxidation with eerie ammonium nitrate in aqueous acetonitrile 
(2.6 equiv, O0C, 0.75 h). The cerium(IV) oxidation presumably 
occurs via iminoquinone 16, which then tautomerizes to furnish 
the selectively demethylated anthraquinone 2 (red-violet; X 544, 
MeOH). For the purpose of comparison to a natural sample, the 
crude product from this reaction was methylated (Cs2CO3, CH3I, 
acetone, 23 ° C, 3 h) to afford, after chromatographic purification, 
an intensely colored orange-red compound (3, X 504, MeOH; 
50% yield, three steps). This material was judged to be identical 
with a naturally derived sample of tri-0-methyl dynemicin A 
methyl ester kindly provided by Dr. T. Ohnuma (Bristol-Myers 
Research Institute) on the basis of its physical properties and 
spectroscopic data (1H NMR, IR, UV, HRMS, HPLC/TLC). 

Although considerable progress has been made in understanding 
dynemicin A's chemical properties, there is still much to be learned 
about its effects on cultured cells. The synthetic studies detailed 
herein and elsewhere2 feature a transannular Diels-Alder poly-
cyclization that rapidly assembles the molecule's core as well as 
a novel anthraquinone annulation sequence that culminates in 
the preparation of a selectively methylated derivative of dynemicin 
A. Because the annulation sequence begins at a relatively late 
point in the synthesis, our route should be amenable to the 
preparation of compounds with a variety of end-ring phenolic 
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substituents (including R = H, cf. 1). The route thus provides 
an opportunity to explore the cellular properties of dynemicin A 
and dynemicin A-like molecules. 
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